ÜBER ψ -TETRA-, PENTA- UND HEXAKOORDINIERTE SULFINATOKOMPLEXE DES ZINNS

EKKEHARD LINDNER*, UDO KUNZE, GÜNTER VITZTHUM, GERHARD RITTER** UND ARMIN HAAG***

Institut für Anorganische Chemie der Universität Erlangen-Nürnberg (Deutschland) (Eingegangen den 4. März 1970)

SUMMARY

Colourless, stable, polymeric, ψ -tetrahedrally coordinated O-sulfinates of divalent tin, $Sn(O_2SR)_2$, were obtained by reaction of $SnCl_2 \cdot 2 H_2O$ with sodium organosulfinates, NaO_2SR ($R = p-CH_3C_6H_4$, C_6H_5), in ethanol. Colourless pentaand hexa-coordinated double O-sulfinato complexes of the type (C_6H_5)_3SnO_2SR, (C_6H_5)_2Sn(O_2SR)₂ and (CH_3)_2Sn(O_2SR)₂ were formed respectively by reaction of triphenyltin chloride and diphenyl- and dimethyltin dichloride with sodium organosulfinates, NaO_2SR ($R = p-CH_3C_6H_4$, C_6H_5 , CH_3), in THF. The structural investigations were performed with the aid of infrared, Raman, Mössbauer, and mass spectroscopy.

ZUSAMMENFASSUNG

Durch Umsetzung von SnCl₂·2 H₂O mit Natrium-organosulfinaten, NaO₂-SR (R = p-CH₃C₆H₄, C₆H₅), in Äthanol erhält man die farblosen und beständigen, polymeren, ψ -tetraedrisch konfigurierten O-Sulfinate des zweiwertigen Zinns, Sn-(O₂SR)₂. Bei der Reaktion von Triphenylzinnchlorid und Diphenyl- bzw. Dimethylzinndichlorid mit Natrium-organosulfinaten, NaO₂SR (R = p-CH₃C₆H₄, C₆H₅), CH₃), in THF, bilden sich die farblosen penta- bzw. hexakoordinierten Doppel-O-Sulfinatokomplexe des Typs (C₆H₅)₃SnO₂SR und (C₆H₅)₂Sn(O₂SR)₂ bzw. (CH₃)₂-Sn(O₂SR)₂. Die Strukturuntersuchungen wurden mit Hilfe von IR-, Raman-, Mössbauer- und Massenspektren durchgeführt.

EINLEITUNG

In vorstehender Arbeit¹ konnten wir zeigen, dass Tetramethyl- und Tetraäthylzinn bereits bei -20° selektiv je 1 Mol SO₂ aufnehmen. Ein weiterer SO₂-Einbau gelang dagegen nur im Falle des Tetraäthylzinns bei einer Temperatur von

^{*} Korrespondenzanschrift.

^{**} Physikalisches Institut II der Universität Erlangen-Nürnberg.

^{***} Institut für Organische Chemie der Universität Erlangen-Nürnberg.

60°. Im Rahmen unserer systematischen Untersuchungen von Sulfinatokomplexen des Zinns schien uns das Verhalten von Zinn(II)-chlorid bzw. Tri- und Diorganozinn-(IV)-halogeniden gegenüber Organosulfinaten von besonderem Interesse, zumal die entsprechenden Zinn(II)²⁻⁴- bzw. Organozinn(IV)-carboxylate⁵⁻⁸ bereits hinlänglich beschrieben worden sind.

RESULTATE UND DISKUSSION

I. Umsetzung von $SnCl_2 \cdot 2 H_2O$ mit Natrium-organosulfinaten

Lässt man stöchiometrische Mengen $SnCl_2 \cdot 2H_2O$ auf Natrium-*p*-toluolund -benzolsulfinat gemäss Gl. (1) in Alkohol bei Zimmertemperatur einwirken, so

$$\operatorname{SnCl}_{2} + 2 \operatorname{NaO}_{2} \operatorname{SR} \xrightarrow{20^{\circ}} \operatorname{Sn}(O_{2} \operatorname{SR})_{2} + 2 \operatorname{NaCl}$$
(1)
$$\operatorname{R} = p - \operatorname{CH}_{3} \operatorname{C}_{6} \operatorname{H}_{4}, \operatorname{C}_{6} \operatorname{H}_{5}$$

entstehen die farblosen, wasserfreien Bis(organosulfinate) $Sn(O_2SC_6H_5-p-CH_3)_2$ und $Sn(O_2SC_6H_5)_2$. Beide Verbindungen besitzen relativ niedrige Schmelzpunkte $[Sn(O_2SC_6H_4-p-CH_3)_2: 168-169^\circ; Sn(O_2SC_6H_5)_2: 161-162^\circ;$ unter Zersetzung]. Ihre Unlöslichkeit in allen organischen Solvenzien und Wasser spricht für eine polymere Anordnung (vgl. IR-Teil).

In gleicher Weise reagieren auch Blei(II)-salze mit Organosulfinaten zu den entsprechenden Sulfinatokomplexen des Bleis:

$$Pb(NO_{3})_{2} + 2 \operatorname{NaO}_{2}SR \xrightarrow{20^{\circ}} Pb(O_{2}SR)_{2} + 2 \operatorname{NaNO}_{3}$$

$$R = p-CH_{3}C_{6}H_{4}, C_{6}H_{5}$$
(2)

Die farblosen Verbindungen zersetzen sich im Gegensatz zu den oben beschriebenen Sn^{II}-Derivaten erst oberhalb 300°, ohne zu schmelzen. Wie diese zeigen sie weder in organischen Solvenzien noch in Wasser Löslichkeit.

II. Umsetzung von Triorgano- und Diorganozinn(IV)-halogeniden mit Natrium-organosulfinaten

Nach dem erfolgreichen Verlauf der unter I beschriebenen Versuche erschien es von Interesse, auch Organozinn(IV)-halogenide mit Organosulfinaten zur Reaktion zu bringen, um auf diese Weise zu Sulfinatokomplexen des Zinns mit höheren Koordinationszahlen zu gelangen. Lässt man auf Triphenylzinn-chlorid und Diphenyl- bzw. Dimethylzinn-dichlorid bei 20° in THF aromatische und aliphatische Natrium-organosulfinate gemäss Gl. (3) einwirken, so erhält man in sehr guten Aus-

$$R_{x}SnCl_{4-x} + (4-x) NaO_{2}SR' \xrightarrow{20}_{\text{THF}} R_{x}Sn(O_{2}SR')_{4-x} + (4-x) NaCl$$
(3)
für x=3: R=C₆H₅; R'=p-CH₃C₆H₄, C₆H₅, CH₃

für
$$x=2: R=C_6H_5, CH_3; R'=p-CH_3C_6H_4, C_6H_5, CH_3$$

beuten die entsprechenden farblosen, pentakoordinierten Triphenylzinn-organcsulfinate, sowie die hexakoordinierten Diphenyl- bzw. Dimethylzinn-bis(organosulfinate). Das Triphenylzinn-benzolsulfinat ist bereits früher von Pang und Becker⁹ durch Reaktion von $(C_6H_5)_3$ SnH mit C_6H_5 SO₂Cl oder C_6H_5 SO₂H dargestellt worden. Bis auf das Dimethylzinn-bis(methansulfinat) (Leitfähigkeit in H₂O bei 22°: V = 299.5 l/Mol; $A = 335 \text{ cm}^2 \cdot \text{Mol}^{-1} \cdot \Omega^{-1}$) sind alle in Gl. (3) angegebenen Sulfinatokomplexe in sämtlichen organischen Solvenzien und Wasser unlöslich. Thermisch und gegenüber Luftsauerstoff sind sie stabil; ihre Schmelz- bzw. Zersetzungspunkte liegen oberhalb 200° (vgl. Tabelle 6).

Weitere Versuche haben gezeigt, dass auch Trimethylzinn-bromid mit Natrium-organosulfinaten gemäss Gl. (3) reagiert. Allerdings sind die Ausbeuten der bisher noch nicht rein dargestellten Reaktionsprodukte $(CH_3)_3SnO_2SR$ ($R=p-CH_3C_6H_4$, C_6H_5 , CH_3) relativ niedrig. Eine Trennung von den Nebenprodukten gelang bisher nicht, da der Doppel-O-Anteil hier in schwerlöslicher Form anfällt. Nachdem dies zumindest beim $(CH_3)_3SnO_2SCH_3$ im Gegensatz zum gleichen, aber löslichen Produkt steht, das durch SO_2 -Einschiebung in $(CH_3)_4Sn$ erhalten wurde^{1,10}, nehmen wir Gleichgewichte zwischen löslichen und unlöslichen Doppel-O-Sulfinat-Formen an (vgl. Ref. 6–8). Bei mehrmaligem Umkristallisieren von $(CH_3)_2Sn(O_2-SCH_3)_2$ stellt man im IR-Spektrum plötzlich eine Zersetzung fest.

III. IR- und Ramanspektren

In den IR- und Ramanspektren von Zinn(II)-bis(*p*-toluol-) und -(benzolsulfinat) treten neben den charakteristischen Schwingungen der aromatischen Reste im Bereich von 900–1000 cm⁻¹ vier starke Absorptionen auf, die wir SO₂-Valenzschwingungen zuordnen (vgl. Fig. 1 und Tabelle 1).

Die Zahl der auftretenden Banden lässt den Schluss zu, dass die beiden Sulfinatoliganden nicht äquivalent sind. Offensichtlich sind die Zinnatome intermolekular über je einen RSO_2^- -Rest verknüpft ("Doppel-O-Sulfinat"), während der zweite Ligand über ein O-Atom an das Metall gebunden ist ("Mono-O-Sulfinat") (vgl. Fig. 4). Ein ähnlicher Strukturtyp ist für SnCl₂ schon vor längerer Zeit nachgewiesen worden¹¹ (vgl. Fig. 2), in dem ein Chloratom als Brückenligand fungiert, das andere

Fig. 1. IR-Spektrum von $Sn(O_2SC_6H_4-p-CH_3)_2$ im Bereich von 670–4000 cm⁻¹ (fest KBr).

charakteristische IR- und Raman-frequenzen von bis(organosulfinaten) des zinns, $Sn(O_2SR)_2 R = p-CH_3 C_6H_4 = Tol, C_6H_5 = Ph$; in cm⁻¹

Sn(O2STol)2 IR (KBr)	Sn(O ₂ SPh) ₂	Zuordnung	
	IR (KBr)	Raman (fest)	
 985 st	993 st) (50)
959 sst	958 st	961 sch	$v_{as}(SO_2)$
931 sst	sst 917 sch 910 m-s		
912 sst	897 sst	897 m	$\{v_s(SO_2)\}$
628 st ^a	686 st	693 s	´v(C−S)
	595 stª	599 ss	
562 st ^a	585 stª	590 ss	{ o(SU₂)
505 ss ^a	505 ssª		΄ ρ(SO ₂)

" In Nujol.

dagegen endständig gebunden ist. Im (monomeren) $SnCl_2 \cdot 2H_2O$ ist eine Koordinationsstelle von H_2O besetzt, während das andere Wassermolekül im Kristallgitter gebunden ist (vgl. Fig. 3).

Fig. 2. Struktur des wasserfreien Zinn(II)-chlorids.

Fig. 3. Struktur von SnCl₂·2H₂O.

Fig. 4. Strukturvorschlag für Verbindungen des Typs Sn(O₂SR)₂ (R=p-CH₃-C₆H₄, C₆H₅).

Berücksichtigt man noch das freie Elektronenpaar am Zinn, so kommt diesem eine pseudo-tetraedrische (ψ -tetraedrische) Umgebung¹¹ zu. Dieser Strukturvorschlag wird durch die ausgezeichnete Übereinstimmung der Mössbauer-Spektren von SnCl₂·2 H₂O und Sn(O₂SC₆H₅)₂ noch weiter gestützt (vgl. Mössbauer-Teil). Die gleiche Struktur diskutieren auch Donaldson und Mitarbeiter^{3,4} für Zinn(II)carboxylate. Die Autoren finden für Zinn(II)-acetat eine beträchtliche Verschiebung der asymmetrischen und symmetrischen CO₂-Valenzschwingung nach niedrigeren Frequenzen gegenüber den Alkaliacetaten, was sie als Mass für die Verzerrung der Molekülsymmetrie infolge des freien Elektronenpaares am Zinn betrachten.

Charakteristisch sind weiterhin die zwischen 600 und 700 cm⁻¹ auftretende C-S-Valenzschwingung, sowie die im Bereich von 500-600 cm⁻¹ erscheinenden, z.T. sehr intensiven, SO₂-Deformationsschwingungen. Die Lage der δ (SO₂) und

 $\rho(SO_2)$ wird von der Art und Ladung des Zentralatoms nicht wesentlich beeinflusst. Diese Tatsache konnten wir bereits früher bei der Untersuchung von S-Sulfinatokomplexen des Mangans, Eisens und Kobalts feststellen¹².

Die IR-Spektren der von uns erstmals isolierten Bis(p-toluol-) und Bis(benzolsulfinato)-blei(II)-Komplexe unterscheiden sich wesentlich von denen der entsprechenden Zinnverbindungen. Es treten nämlich jeweils nur zwei intensive Absorptionsbanden im SO₂-Valenzschwingungsbereich auf, wobei wir die kürzerwellige der asymmetrischen, die längerwellige der symmetrischen $v(SO_2)$ zuordnen [Pb(O₂S-C₆H₄-p-CH₃)₂: $v_{as}(SO_2)$ 990 st; $v_s(SO_2)$ 930 sst. Pb(O₂SC₆H₅)₂: $v_{as}(SO_2)$ 991 st; $v_s(SO_2)$ 932 sst cm⁻¹; fest KBr]. Damit kommt eine Struktur, wie sie für die beiden Zinnverbindungen diskutiert wurde, nicht in Frage, zumal der sterische Effekt der 6s-Elektronen beim Blei wesentlich geringer ist³. Infolge der geringen Frequenzdifferenz von $v_{as}(SO_2)$ und $v_s(SO_2)$ sind beide RSO₂⁻-Liganden über Sauerstoff an das Blei gebunden. Möglicherweise liegt folgende einfache tetraedrische Struktur vor:

Fig. 5. Strukturmodell für Verbindungen des Typs $Pb(O_2SR)_2$ (R=p-CH₃-C₆H₄, C₆H₅).

Die IR-Spektren der Triphenýlzinn-organosulfinate, $(C_6H_5)_3SnO_2SR$ (R = p-CH₃C₆H₄, C₆H₅, CH₃), sind dem des Trimethylzinn-methansulfinats^{1,10} sehr ähnlich (vgl. Fig. 6 und Tabelle 2).

Auf Grund der Lage und geringen Frequenzdifferenz der asymmetrischen und symmetrischen SO₂-Valenzschwingung liegen im Gegensatz zu früheren Anschauungen¹³ und in Übereinstimmung mit dem $(CH_3)_3SnO_2SCH_3^1$ fünffach koordinierte,

Ph ₃ SnO ₂ STol	Ph ₃ SnO ₂ SPh	13	Ph ₃ SnO ₂ SMe	Zuordnung	
(fest KBr)	IR (fest KBr)	Raman (fest)	lk (fest KBr)		
963 st	979 m	983 m	972 sch) (80.)	
951 st	952 st	961 m	961 sst	$\nu_{as}(SO_2)$	
932 m	930 т		928 st	$v_{s}(SO_{2})$	
632 m ^a 587 m-st ^a	689 m 585 m²	590 m-s	538 st ^a	v(C - S) $\delta(SO_2)$	
518 ss ^a	508 ss				
502 ss ^a				{ρ(SO₂)	
282 st"	280 st"	285 m–s	281 st ^a 274 st ^a	$v_{as}(SnC_3)$	
230 mª	230 mª	218 st	244 m ^a 230 m ^a	$v_{s}(SnC_{3})$	

CHARAKTERISTISCHE IR- UND RAMAN-DATEN VON TRIPHENYLZINN-ORGANOSULFINATEN, $(C_6H_5)_3SnO_2SR$ R=p-CH₃C₆H₄=Tol, C₆H₅=Ph, CH₃=Me; in cm⁻¹.

^a In Nujol.

Fig. 7. Strukturmodell der Triphenylzinn-organosulfinate, $(C_6H_5)_3$ SnO₂SR (R = p-CH₃-C₆H₄, C₆H₅, CH₃).

intermolekulare Doppel-O-Sulfinato-Komplexe vor (vgl. Fig. 7). Im Bereich von 200–300 cm⁻¹ treten jeweils zwei SnC₃-Valenzabsorptionen auf. Dies würde auf eine trigonal-pyramidale Anordnung der drei Phenylgruppen um das Zinn hindeuten. Betrachtet man allerdings die Verhältnisse beim Trimethylzinn-methansulfinat¹, so kann eine ebene Anordnung der Phenylreste in den Triphenylzinn-organosulfinaten nicht ausgeschlossen werden. Die Zuordnung für v_{as} - und $v_s(SnC_3)$ wird noch durch das Ramanspektrum gestützt, das bei den entsprechenden Frequenzen ebenfalls zwei Banden aufweist. Auf Grund der IR-Spektren diskutieren wir damit für die Triphenylzinn-organosulfinate, (C₆H₅)₃SnO₂SR (R=p-CH₃C₆H₄, C₆H₅, CH₃), das Strukturmodell in Fig. 7.

Die in ihrer Bruttozusammensetzung dem $(C_2H_5)_2Sn(O_2SC_2H_5)_2^1$ analogen Diphenyl- bzw. Dimethylzinn-bis(organosulfinate), $(C_6H_5)_2Sn(O_2SR)_2$ bzw. $(CH_3)_2$ - $Sn(O_2SR)_2$ (R = p-CH₃C₆H₄, C₆H₅), zeigen im IR-Spektrum zwei SO₂-Valenzschwingungen im Bereich von 900–1000 cm⁻¹ (vgl. Tabelle 3). Die aliphatischen Bis(sulfinate) (C₆H₅)_2Sn(O_2SCH_3)_2 und (CH₃)_2(O_2SCH₃)_2 weisen im Gegensatz dazu vier SO₂-Valenzabsorptionen auf (vgl. Fig. 8).

Die geringe Frequenzdifferenz von v_{as} - und $v_s(SO_2)$ weist in allen sechs Fällen darauf hin, dass die RSO_2^- -Liganden über beide O-Atome an das Zinn gebunden

SULFINATOKOMPLEXE DES ZINNS

TABELLE 3

CHARAKTERISTISCHE IR- und Raman-frequenzen von diphenyl- und dimethylzinn-bis(organosulfinaten), $R_2Sn(O_2SR')_2$

Verbindung	$v_{as}(SO_2)$	v _s (SO ₂)	v(C-S)	δ(SO₂)	$\rho(SO_2)$	$v_{as}(SnC_2)$	$v_s(SnC_2)$
$Ph_2Sn(O_2STol)_2IR$	952 sst	940 sst	636 mª	588 mª	500 sª	300 mª	270 sch ^a
Ph ₂ Sn(O ₂ SPh) ₂ IR	958 st 945 sch	936 sst	690 m	598 mª 587 mª	510 sª	298 mª	255 sch"
$Ph_2Sn(O_2SMe)_2$ IR	964 m 947 st	919 sst 912 sst	703 m	544 mª	500 ssª	295 mª	248 mª
Me ₂ Sn(O ₂ STol) ₂ IR	985 sst 973 st	965 sst 949 sch	637 mª	585 mª		573 st ^a	
Me ₂ Sn(O ₂ SPh) ₂ IR Raman	970 sst	953 sst	685 m	582 mª		601 st" 598 ss	516 sst
$Me_2Sn(O_2SMe)_2$ IR	974 st 957 st	941 m 928 st	700 s	580 sch ^a		570 m ^a	537 mª
Raman	977 s 955 m	930 m-s	703 st	580 ss	_		517 sst

 $R = C_6H_5 = Ph$, $CH_3 = Me$; $R' = p-CH_3C_6H_4 = Tol$, $C_6H_5 = Ph$, $CH_3 = Me$; in cm⁻¹. IR-Spektren fest KBr, Ramanspektren als Festkörper.

" In Nujol.

sind und somit Doppel-O-Sulfinatokomplexe vorliegen. Aus der Lage der SO₂-Valenzschwingungen kann weiterhin entnommen werden, dass es sich um eine intermolekulare Verknüpfung der RSO₂⁻-Reste handelt. Wir beobachteten bisher häufig charakteristische Unterschiede in der Lage der SO₂-Valenzabsorptionen bei monomeren und polymeren Übergangsmetall-Sulfinato-Komplexen. Es ist auffallend, dass bei monomeren Sulfinatokomplexen¹⁴, deren Struktur gesichert erscheint, v_{as}- und v_s(SO₂) um 1000 cm⁻¹ absorbieren, während in polymeren Komplexen¹⁵ die genannten Valenzfrequenzen zwischen 900 und 980 cm⁻¹ auftreten.

Im langwelligen Teil der IR-Spektren der Diphenyl- bzw. Dimethylzinn-bis-(organosulfinate) tritt mit Ausnahme von Diphenyl- und Dimethylzinn-bis(methansulfinat) im Bereich der SnC_2 -Valenzschwingungen jeweils nur eine Bande auf, die wir der asymmetrischen SnC_2 -Valenzschwingung zuordnen. Bei $(C_6H_5)_2Sn(O_2S-C_6H_4-p-CH_3)_2$ und $(C_6H_5)_2Sn(O_2SC_6H_5)_2$ ist die $v_s(SnC_2)$ als Schulter zu erkennen. Daraus schliessen wir, dass in Übereinstimmung mit den entsprechenden Sulfonato¹⁶und Carboxylato-Komplexen¹⁷ des Zinns ebenfalls eine lineare, bzw. nahezu lineare, *trans*-ständige Anordnung der Phenyl- bzw. Methylgruppen vorliegt (vgl. Fig. 9), was in guter Übereinstimmung mit den Mössbauer-Daten (vgl. Mössbauer-Teil) steht.

Dagegen beobachten wir in den IR-Spektren von Diphenyl- und Dimethylzinn-bis(methansulfinat) jeweils zwei IR-aktive SnC_2 -Valenzschwingungen, was mit mit dem Auftreten von vier SO_2 -Valenzschwingungen übereinstimmt. Daraus geht hervor, dass es sich vermutlich um eine *cis*-ständige C-Sn-C-Anordnung handelt. Eine weitere Klärung des Sachverhalts sollten noch ausstehende Mössbauer-Untersuchungen bringen.

Fig. 8. Ausschnitt aus dem IR-Spektrum von $(CH_3)_2Sn(O_2SCH_3)_2$ im Bereich von 900–1000 cm⁻¹ (fest KBr).

Fig. 9. Strukturvorschlag für Verbindungen des Typs $R_2Sn(O_2SR')_2$ ($R = CH_3$, C_6H_5 ; $R' = p - CH_3C_6H_4$, C_6H_5).

IV. Mössbauer-Spektren

900

cm⁻¹

Nach Herber, Stöckler und Reichle¹⁸ gibt das Verhältnis ρ der Quadrupolaufspaltung ΔE zur Isomerieverschiebung δ (gegen SnO₂ gemessen) einen Hinweis auf die Koordinationszahl des Zinns in seinen Verbindungen. Zinnatome mit Koordinationszahlen >4 ergeben ρ -Werte, die oberhalb von 2.1 liegen, während ρ -Werte unterhalb 1.8 auf vierfache Koordination hindeuten.

TABELLE 4

1000

MÖSSBAUERDATEN VON Sn $(O_2SC_6H_5)_2$, $(C_6H_5)_3SnO_2SC_6H_5$ UND $(C_6H_5)_2Sn(O_2SC_6H_5)_2$ Bei 77°K mit einer Quelle von ¹¹⁹Sn in Mg₂Sn bei 295°K. ΔE und δ in mm/sec gegen SnO₂ (Messfehler: 0.07 mm/sec).

Verbindung	Quadrupolauf- spaltung ΔE	Isomeriever- schiebung δ	$ \rho = \frac{\Delta E}{\delta} $	
$Sn(O_2SC_6H_5)_2$	1.13	3.65	0.31	
$(C_6H_5)_3$ SnO ₂ SC ₆ H ₅	3.51	1.27	2.76	
$(C_6H_5)_2$ Sn $(O_2SC_6H_5)_2$	4.06	1.18	3.44	

Das Mössbauer-Spektrum von $Sn(O_2SC_6H_5)_2$ stimmt weitgehend mit dem des $SnCl_2 \cdot 2 H_2O$ überein (vgl. Fig. 10). Die breite Absorptionslinie bei – 1.6 mm/sec liegt etwa an der gleichen Stelle wie die unter denselben Bedingungen gemessene Linie des SnO_2 , dürfte also auf eine Verunreinigung zurückzuführen sein. Der kleine ρ -Wert von nur 0.31 weist darauf hin, dass die Koordinationszahl des Zinns in guter Übereinstimmung mit früheren Messungen an $SnCl_2 \cdot 2 H_2O$ und wasserfreiem $SnCl_2^{19}$ sehr niedrig ist. Die von Donaldson und Jelen⁴ ermittelten Daten für Zinn-(II)-carboxylate, deren Struktur den Sulfinaten entsprechen sollte, weichen dagegen beträchtlich von unseren Ergebnissen ab.

Fig. 10. Mössbauer-Spektrum des $Sn(O_2SC_6H_5)_2$ (Aufnahmedaten siehe Tabelle 4). Zum Vergleich ist das unter denselben Bedingungen gemessene Spektrum des $SnCl_2 \cdot 2H_2O$ eingezeichnet (×).

Unter Berücksichtigung des obigen Kriteriums haben Mössbauer-Untersuchungen gezeigt, dass das Zinn in $(C_6H_5)_3SnO_2SC_6H_5$ fünffach koordiniert ist (vgl. Fig. 11). Das Mössbauer-Spektrum dieser Verbindung steht damit in völliger Übereinstimmung mit denjenigen von Trimethylzinn-methansulfinat¹ und den Triorganozinn-carboxylaten⁸.

Auf Grund des relativ hohen ρ -Werts für $(C_6H_5)_2Sn(O_2SC_6H_5)_2$ kann eine vier- oder fünffache Koordination mit grosser Wahrscheinlichkeit ausgeschlossen werden. In Einklang mit den IR-spektroskopischen Untersuchungen dürfte damit die sechsfache Koordination des Zinns gesichert sein. Analoge Verhältnisse nehmen wir auch bei den anderen in dieser Arbeit beschriebenen Diorganozinn-bis(organosul-

Fig. 11. Mössbauer-Spektrum von (C₆H₅)₃SnO₂SC₆H₅ (Aufnahmedaten siehe Tabelle 4).

finaten) an. Aus der Quadrupolaufspaltung ΔE ersicht man auf Grund einer von Fitzsimmons, Seeley und Smith²⁰ aufgestellten, in vielen Fällen bestätigten Regel, dass im Diphenylzinn-bis(benzolsulfinat) eine *trans*-Anordnung der (C₆H₅)₂Sn-Gruppierung vorliegt. Die Autoren fanden, dass für oktaedrische Diorganozinn(IV)-Komplexe mit Cl-, O- und N-haltigen Liganden $\Delta E_{trans} \approx 2 \Delta E_{cis}$ ist, wobei ΔE_{trans} in

der Grössenordnung von 4 mm/sec liegt, was in ausgezeichneter Übereinstimmung mit unseren Messungen steht.

V. Massenspektrum von $(C_6H_5)_3$ Sn $O_2SC_6H_5$

Das Massenspektrum des $(C_6H_5)_3$ SnO₂SC₆H₅ ist unter Berücksichtigung der Phenylsubstituenten dem des $(CH_3)_3$ SnO₂SCH₃¹ weitgehend analog. Das Molekülion bei m/e = 492 (berechnet mit dem häufigsten Zinnisotop ¹²⁰Sn) erscheint mit grosser Intensität (vgl. Tabelle 5). Die Intensitäten des Isotopenclusters stimmen mit dem natürlichen Verhältnis der Zinnisotope gut überein. Eliminierung von C₆H₅ liefert ein erstes Fragmention bei m/e = 415; Abspaltung von C₆H₅SO₂ gibt den Basepeak (C₆H₅)₃Sn⁺ bei m/e = 351. Ion 351 fragmentiert unter Eliminierung von

TABELLE 5

WICHTIGSTE PEAKS DES MASSENSPEKTRUMS VON (C6H5)3SnO2SC6H5

m/e	Zuordnung	Rel. Intensität I
492	$[(C_6H_5)_3SnO_2SC_6H_5]^{\ddagger}$	24
415	$\left[\left(C_{6}H_{5}\right)_{2}SnO_{2}SC_{6}H_{5}\right]^{+}$	4
351	$[(C_6H_5)_3Sn]^+$	100
197	$[C_{s}H_{s}Sn]^{+}$	67
154	ŢĊ ^Ħ ² C ⁴ H ²] [‡]	86
120	[¹²⁰ Sn] ⁺	47
78	ĨС ₆ Н ₆ Ĩ‡	54
77	ĨĊ,H,Ĩ+	47
44	[Cš] ⁻	69

Diphenyl zu $C_6H_5Sn^+$ bei m/e=197. Charakteristisch ist das Fehlen des Ions $(C_6H_5)_2Sn^+$ bei m/e=274. Diphenyl selbst erscheint bei m/e=154 mit beträchtlicher Intensität.

BESCHREIBUNG DER VERSUCHE

I. Umsetzung von $SnCl_2 \cdot 2 H_2O$ und $Pb(NO_3)_2$ mit Natrium-organosulfinaten

Die Zinn(II)- und Blei(II)-sulfinate werden nach folgender allgemeinen Vorschrift dargestellt: $SnCl_2 \cdot 2 H_2O$ und $Pb(NO_3)_2$ werden in ca. 50 ml Solvens gelöst (Sn: Alkohol, Pb: Wasser) und mit der äquivalenten Menge Natrium-organosulfinat einen Tag bei Zimmertemperatur unter kräftigem Rühren umgesetzt. Im Falle des Zinns empfiehlt es sich, unter N₂ zu arbeiten, um eine Oxydation zu Sn^{TV} zu verhindern. Man filtriert ab (G 3), wäscht gründlich mit Wasser aus (bei den Zinnsulfinaten anfangs mit Alkohol) und entfernt dann das Wasser durch Waschen mit Alkohol/Äther und Trocknen über P₄O₁₀. Einzelheiten sind Tabelle 6 zu entnehmen.

II. Umsetzung von Triorgano- und Diorganozinn-halogeniden mit Natrium-organosulfinaten

Die Organozinn(IV)-sulfinate werden auf ähnliche Weise durch 20 stdg. Umsetzung einer Lösung des betreffenden Organozinn-halogenids in ca. 50 ml THF (über KOH getrocknet) mit der stöchiometrischen Menge Natrium-organosulfinat

ANSÄTZE UND AUSBEUTEN BEI DER DARSTELLUNG VON ZINN(II)-, BLEI(II)- UND ORGANOZINN(IV)-SULFINATEN, SOWIE DEREN SCHMELZ- BZW. ZERSETZUNGSPUNKTE $Tol = p-CH_3C_6H_4$, $Ph = C_6H_5$, $Me = CH_3$.

Ausgangsverb.		NaO ₂ SR		Proc	lukt	Schmp.	Zersp.
(g)	(mMol)	(g)	(mMol)	(g)	(Ausb.%)	(°C)	(°C)
SnCi 2.25	l₂·2H₂O 10	R = 7 3.6	Гоl 20	Sn(C 4.2	D ₂ STol) ₂ 98	168–169	169
		R=3 3.3	Ph 20	Sn(C 3.8	0₂SPh)₂ 95	161–162	162
Pb(N 1.65	NO ₃) ₂ 5	R = 1 1.8	Гоl 10	Pb(C 2.5	0₂STol)₂ 93		300
		R = 1 1.65	Ph 10	Pb(0 2.2	0 ₂ SPh) ₂ 98		300
Ph ₃ S 3.85	SnCl 10	R=1	Го] 10	Ph ₃ S 3.5	SnO2STol 70	218219	230
5.05 10		R=1 1.65	Ph 10	Ph ₃ S 4.0	SnO ₂ SPh 81	228–229	230
		R = 1 1.0	Me 10	Ph ₃ 5 2.0	SnO ₂ SMe 41	235–237	236
Ph ₂ S 1.7	SnCl ₂ 5	R = 1 1.8	Гоl 10	Ph₂S 2.5	n(O2STol)2 72	199–201	201
		R = 1 1.65	Ph 10	Ph₂S 2.5	5n(O2SPh)2 75	205–206	206
		R = 1 1.0	Me 10	Ph ₂ S 1.3	Sn(O ₂ SMe) ₂ 46	215–217	217
Me ₂ 2.2	SnCl ₂ 10	R=1 3.5	Гоі 20	Me ₂ 4.1	Sn(O2STol)2 89	258-259	259
		R = 1 3.2	Ph 20	Ме ₂ 3.6	Sn(O ₂ SPh) ₂ 84	240-241	241
		R = 1 2.0	víe 20	Me ₂ : 2.4	Sn(O2SMe)2 77		210

bei Zimmertemperatur dargestellt. Man filtriert (G 3; kein Luftausschluss erforderlich), wäscht zunächst mehrmals mit THF, um nicht umgesetztes Organozinnhalogenid zu entfernen, und dann-mit Ausnahme des Dimethylzinn-bis(methansulfinats)-gründlich mit Wasser aus. Durch weiteres Waschen mit Alkohol/Äther und Trocknen über P_4O_{10} können die Organozinn-sulfinate wasserfrei erhalten werden.

Das wasserlösliche $(CH_3)_2 Sn(O_2SCH_3)_2$ wird einige Male mit THF gewaschen, im Hochvakuum getrocknet und aus Äthanol umkristallisiert.

Die Diphenylzinn-bis(organosulfinate) fallen in schlecht filtrierbarer Form an und werden zweckmässig durch mehrmaliges Zentrifugieren und Dekantieren des Lösungsmittels gereinigt. Vor dem Auswaschen mit Wasser muss das THF vollständig entfernt werden. Nachfolgendes Waschen mit Alkohol und Äther ist ebenfalls zu vermeiden.

Nähere Angaben sind Tabelle 6 und 7 zu entnehmen.

Verbindung	Analysen, gef. (ber.) (%)					
	c	н	S	Sn		
Sn(O ₂ STol) ₂	37.41	3.25	14.22	29.10		
	(39.19)	(3.29)	(14.95)	(27.66)		
$Sn(O_2SPh)_2$	36.01	2.54	16.08	29.45		
	(35.94)	(2.51)	(15.99)	(29.60)		
$Pb(O_2STol)_2$	32.40	2.78		40.42ª		
	(32.49)	(2.73)	(12.39)	(40.03) ^a		
$Pb(O_2SPh)_2$	30.29	2.18		42.05ª		
	(29.44)	(2.06)	(13.10)	(42.32) ^e		
Ph ₃ SnO ₂ STol	59.33	4.37	6.72	23.21		
	(59.44)	(4.39)	(6.35)	(23.49)		
Ph ₃ SnO ₂ SPh	58.8 1	` 3.92 [´]	6.65	23.70		
	(58.69)	(4.10)	(6.53)	(24.16)		
Ph ₃ SnO ₂ SMe	`52.22 ´	4.98	7.89	27.14		
· ·	(53.18)	(4.23)	(7.47)	(27.74)		
Ph ₂ Sn(O ₂ STol) ₂	53.82	4.31	10.62	19.85		
/.	(53.54)	(4.15)	(10.99)	(20.35)		
$Ph_2Sn(O_2SPh)_2$	52.11	3.50	12.05	21.09		
	(51.92)	(3.63)	(11.55)	(21.38)		
$Ph_2Sn(O_2SMe)_2$	38.52	3.24	` 13.84 [´]	27.78		
/2	(39.01)	(3.74)	(14.88)	(27.53)		
Me,Sn(O,STol),	41.92	5.09	13.74	25.12		
	(41.85)	(4.39)	(13.97)	(25.85)		
Me ₂ Sn(O ₂ SPh) ₂	39.14	3.84	14.62	27.15		
/2	(39.01)	(3.74)	(14.88)	(27.53)		
Me ₂ Sn(O ₂ SMe) ₂	13.65	3.51	20.40	36.25		
72	(15.65)	(3.94)	(20.89)	(38.67)		
	()	()	()	(

ANALYSENWERTE DER IN TABELLE 6 BESCHRIEBENEN VERBINDUNGEN $Tol = p-CH_3C_6H_4$, $Ph = C_6H_5$, $Me = CH_3$.

″ Pb.

III. IR- und Raman-Spektren

Die IR-Spektren wurden mit einem Beckman IR 7-Gitterspektrographen mit NaCl-Vorzerlegungsprisma aufgenommen. Für den langwelligen Bereich (< 600 cm⁻¹) verwendeten wir eine CsJ-Austauschoptik.

Zur Aufnahme der Ramanspektren diente ein CODERG-Spektrometer, Modell PH 1, mit Spectra Physics Helium-Neon-Laser.

IV. Mössbauer-Spektren

Die Mössbauer-Spektren wurden mit einem Spektrometer der Firma Frieseke und Höpfner (FHT 800 A) im Multiscaler-Betrieb vermessen. Die Temperatur der Quelle (¹¹⁹Sn in Mg₂Sn) betrug bei allen Messungen 295°K, die Absorbertemperatur 77°K.

V. Massenspektrum

Zur Aufnahme des Elektronenstossspektrums wurde ein Massenspektrometer der Firma Varian MAT, Modell CH-4B (EFO-4B-Quelle, 70 eV, Direkteinlass, Quellentemperatur 180°, Verdampfungstemperatur 100°) verwendet.

DANK

Herrn Prof. Dr.-Ing. H. Behrens und Herrn Prof. Dr. H. Wegener danken wir für die finanzielle Förderung dieser Arbeit und die Überlassung des Mössbauer-Spektrometers. Unser Dank gilt weiterhin der Deutschen Forschungsgemeinschaft für die Bereitstellung der spektroskopischen Geräte und die finanzielle Unterstützung dieser Untersuchungen. Ebenso sind wir dem Verband der Chemischen Industrie, Fonds der Chemischen Industrie, sehr zu Dank verpflichtet.

LITERATUR

. .

- 1 E. LINDNER, U. KUNZE, G. RITTER UND A. HAAG, J. Organometal. Chem., 24 (1970) 119.
- 2 J. D. DONALDSON UND J. F. KNIFTON, J. Chem. Soc., (1964) 4801; J. D. DONALDSON, W. MOSER UND W. P. SIMPSON, J. Chem. Soc., (1964) 5942.
- 3 J. D. DONALDSON, J. F. KNIFTON UND S. D. ROSS, Spectrochim. Acta, 20 (1964) 847; 21 (1965) 275.
- 4 J. D. DONALDSON UND A. JELEN, J. Chem. Soc. A, (1968) 1448.
- 5 R. OKAWARA UND M. WADA, Adv. Organometal. Chem., 5 (1967) 137.
- 6 P. B. SIMONS UND W. A. G. GRAHAM, J. Organometal. Chem., 8 (1967) 479.
- 7 G. PLAZZOGNA, V. PERUZZO UND G. TAGLIAVINI, J. Organometal. Chem., 16 (1969) 500; 18 (1969) 89.
- 8 B. F. E. FORD, B. V. LIENGME UND J. R. SAMS, Chem. Commun., (1968) 1333; J. Organometal. Chem., 19 (1969) 53.
- 9 M. PANG UND E. BECKER, J. Org. Chem., 29 (1964) 1948.
- 10 G. VITZTHUM, U. KUNZE UND E. LINDNER, J. Organometal. Chem., 21 (1970) P38.
- 11 F. A. COTTON UND G. WILKINSON, Anorganische Chemie, Verlag Chemie, GmbH Weinheim/Bergstr., 1. deutsche Aufl., 1967, S. 431.
- 12 E. LINDNER UND H. WEBER, Z. Naturforschg., 22b (1967) 1243.
- 13 F. A. HARTMAN UND A. WOJCICKI, Inorg. Chem., 7 (1968) 1504.
- 14 E. LINDNER UND G. VITZTHUM, Chem. Ber., 102 (1969) 4053; 102 (1969) 4062.
- 15 E. LINDNER, G. VITZTHUM UND H. WEBER, Z. Anorg. Allg. Chem., im Erscheinen.
- 16 P. A. YEATS, B. F. E. FORD, J. R. SAMS UND F. AUBKE, Chem. Commun., (1969) 791.
- 17 Y. MAEDA UND R. OKAWARA, Inorg. Nucl. Chem. Lett., 2 (1966) 197; J. Organometal. Chem., 10 (1967) 247.
- 18 R. H. HERBER, H. A. STÖCKLER UND W. T. REICHLE, J. Chem. Phys., 42 (1965) 2447.
- 19 J. J. ZUCKERMAN, J. Inorg. Nucl. Chem., 29 (1967) 2191.
- 20 B. W. FITZSIMMONS, N. J. SEELEY UND A. W. SMITH, Chem. Commun., (1968) 390.